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Abstraet The asymmetric diluted Hopfield model is studied through numerical simulations 
and reliable results we obtained even when the network sizes are not exponentially large. The 
mean final overlap, the mean convergence time and a quantity that gives information on the 
relative importance of spurious states are measured as a function of lhe load capacity e. 

Neural network models analogous to spin magnetic systems have been studied in the last 
few years using several powerful frameworks. Among them, the technique developed by 
Derrida, Gardner and Zippelius [ I ]  (hereafter DGZ) to study strongly diluted systems has 
been used in a large variety of models, mainly focusing in the ability of recalling stored 
patterns that are attractors (stable fixed points) of the network dynamics. The obtained 
results are exact in the limit where the mean connectivity (C) satisfies C << In N, where 
N is the size of the network. At first, this condition led to the conclusion that numerical 
simulations should use network sizes scaling as exp(C) to satisfy the above condition. 
However, in this paper we demonstrate that the magnetization can be measured and reliable 
results may be obtained when large though finite networks, with a finite (but not very small) 
C, are considered. We evaluate the mean convergence time and also show that spurious 
states play a role in the dynamics if the network size is finite. 

The network, built of N binary spins, S, = kl, is updated in parallel according to the 
following T = 0 dynamics 

where the connections Ji, are given by the rule 
P 

Jij = Cij z<rfr (2) 
p= I 

and Cij = 1 for C randomly chosen synapses out of the possible N for each neuron and 
zero otherwise. During the temporal evolution of the system we monitored the overlap m,, 
between the state S and the memory C p ,  

t Email address: xenzon@ifl.ufrgs.br 
4 E-mail address: lemke@ifl.ufrgs.br 

0305-4470/94/155161+05$19.50 @ 1994 IOP Publishing Ltd 5161 



5162 J J Arenzon and N Lemke 

0.8 ' 

E O" 1 
0.4 - 

0.2 - 

0.0 
0.0 0.2 0.4 0.6 0.8 1 

I 
0 

a 
Fipre 1. me asymptotic overlap m versus a for several values of N. The analytical results 
[I] are shown for C = 20 (full circle) and in the limit C + 00 (full curve). while the results 
from numerical simulation are the open symbols. The errors bars are for the N = 16000 case. 

The parallel dynamics of the diluted Hopfield model when considering initial 
macroscopic overlap, m(t = 0), with only one of the embedded patterns is ruled by [I]: 

(4) 
Actually, equation (4) is slightly different from DGZ: it does not present the average on the 
Poisson-distributed synapses since we are interested in a fixed connectivity In the limit of 
C 4 00 it obeys [l] 

In either case the network is able to store P memories {r (i = 1,. . . , N ;  /r = 1,. . , , P )  up 
to a, = P,/C = 2/n [l] and the transition from the retrieval phase (m # 0) to a disordered 
one (m = 0) is continuous as a + or,. 

In order to perform the numerical simulation, one does not need to store the whole 
N x N matrix of connections since most of the elements would be zero. We use two 
matrices N x C: one to store the neighbours of a given neuron i and the other for the 
values of each a priori non-zero synaptic connection. The averages were taken over 20 sets 
of memories and P initial states. 

The mean final overlap provides information that allows a comparison between results 
from numerical simulation with those obtained through analytical techniques: the maximum 
load capacity ac, the kind of transition that occurs at a,, the sizes of the basins of attraction 
of the patterns (or equivalently, the robustness against noise), etc. 

In figure 1 we show m versus a for N ranging from 4000 to 16 000 neurons. Both the 
full curve and the full circles are the solution for C 00 (equation (5)) and for C = 20 
(equation (4)), respectively. The e m r  bars are shown just for the N = 16 000 case and 
they are significant only in the region near the transition, as expected. The initial state is 
chosen as one of the embedded memories, that is, m(t  = 0) = 1. The predicted ac is 
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Figure 2. The overlap m ( f )  versus the time f for C = 20 and several values of N and e, The 
continuous curves are the analytical results of (4) for C = 20. 

verified: for increasing values of N the simulation curves tend to attain a non-zero limit if 
LY c aC = 2/n, while going down to zero if a z or,. It must be remarked that the results 
for C = 20 and C + CO are quite the same and there is no need to further increase the 
connectivity. It is also interesting to notice that, different to the simulation of the fully 
connected case, here there is no remanent magnetization for a > ac: m decreases to zero 
as N increases. Although the final overlap obtained with equations (4) and (5) agrees with 
the one obtained in the simulation, the dynamics is re-obtained with reasonable accuracy, 
as can be seen in figure 2. 

Information about the sizes of the basins of attraction may he obtained using initial 
states with m ( f  = 0) < 1 [ 2 ] .  It was verified that for any positive initial overlap and large 
values of N ,  the system converges towards the specified memory, as predicted analytically. 

The mean convergence time [3], that is, the number of parallel updatings needed in order 
to achieve equilibrium, was measured (see figure 3). For 01 > cyc the simulation yields an 
almost constant value for (T) that grows as the network increases, which does not happen 
for low values of a. As LY + ac there is a slowing down in the relaxation time. This is 
different from the fully connected model with sequential updating where the convergence 
time diverges exponentially [4]; here the data seems to fit quite well with a linear behaviour 
near a,, although larger networks and connectivities would be required to rule out other 
possible behaviours. 

Since, during the dynamical evolution, the system may be trapped in states that are 
not memories (spurious states), it is important to measure their influence in the temporal 
evolution. In the case of first-order transitions and when the final overlap has a value near 
unity, the mean convergence time and the dispersion around it provide information on the 
smoothness of the phase space around the embedded memories [3]. Since here the transition 
is continuous, another tool must be used (see [5 ]  for a comparison of both cases). 

A useful quantity that may provide such information is [6] 

M = ((mmo=i)) - ( ( m d  (-5) 
where mmo=I is the maximum absolute value of the final overlap, max(lm,l, 1 < !J < PI,  
when the initial state is equal to one of the embedded memories and miS when it is chosen 
at random. When the only attractors in the phase space are the embedded memories, both 
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Figure 3. The mean convergence time (T) versus a obtained fhrouj 
several vdues of N and C = 20. The error bars are just shown for the N = 16000 case. 
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Figure 4. The value of M versus a obtdned through numerical simulation for several values 
of N and C = 20. For low valua of a. M = 0, and the curve’s a m  decreases as N increnses. 

mm0=, and mds will be the same and hence M = 0. On the other hand, when there are 
attractors other than the patterns with extensive basins around it, M # 0. Thus, M is a 
quantity proportional to the fraction of initial states that lead to spurious states. For small 
a one obtains M = 0 (see figure 4), signalling that no spurious states with considerable 
basins of attraction exist. This is also confirmed by the zero dispersion around the mean 
convergence time: the phase space is smooth around the attractors (for small 01 the retrieval 
overlap with the memories is still near unity and the dispersion around the mean is related 
with spurious states). As ci increases, M grows almost linearly with a, attains a maximum 
and decreases again to zero. The location of the maximum depends on N and converges 
to a, as the sizes get larger. Also for increasing values of N ,  the area under the curve 
decreases: the presence of spurious states seems to be just an artifact of the finite network, 
disappearing when infinite size is achieved. The fluctuations result from the fact that the 
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quantities ((mm,,=l)) and ((me,)) are of the same order and large samples must be used to 
obtain reasonable averages (the averages were taken over 100 sets of patterns, preventing 
us from using larger sizes). Thus, for finite N there is an intermediate region in the @-axis 
where the spurious states play a role in the dynamics of the network. Nevertheless, the 
basins of attraction of the memories are large and, unless the initial overlap is too close to 
zero, the system will recall the desired pattern. The spurious states found here are mainly 
superpositions (symmetric or not) of memories. 

To summarize, we showed that reliable simulations may be performed in strongly diluted 
systems and compared with analytical results even without the use of exponentially large 
systems. With these results the complete range of values of a and C is covered by simulation 
techniques and the whole set of analytical results provided by rather distinct methods 
(replicas, strong dilution, etc) may be tested. Besides this, we evaluate the importance of 
spurious states in the system evolution showing that for small networks they are prominent. 
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